Cambridge International AS \& A Level

CENTRE NUMBER

CANDIDATE NUMBER

PHYSICS

9702/22
Paper 2 AS Level Structured Questions
February/March 2021
1 hour 15 minutes

You must answer on the question paper.
No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 60 .
- The number of marks for each question or part question is shown in brackets [].

Data

speed of light in free space
permeability of free space
permittivity of free space
elementary charge
the Planck constant
unified atomic mass unit
rest mass of electron
rest mass of proton
molar gas constant

$$
\begin{aligned}
c & =3.00 \times 10^{8} \mathrm{~ms}^{-1} \\
\mu_{0} & =4 \pi \times 10^{-7} \mathrm{Hm}^{-1} \\
\varepsilon_{0} & =8.85 \times 10^{-12} \mathrm{Fm}^{-1} \\
\left(\frac{1}{4 \pi \varepsilon_{0}}\right. & \left.=8.99 \times 10^{9} \mathrm{mF}^{-1}\right) \\
e & =1.60 \times 10^{-19} \mathrm{C} \\
h & =6.63 \times 10^{-34} \mathrm{Js} \\
1 \mathrm{u} & =1.66 \times 10^{-27} \mathrm{~kg} \\
m_{\mathrm{e}} & =9.11 \times 10^{-31} \mathrm{~kg} \\
m_{\mathrm{p}} & =1.67 \times 10^{-27} \mathrm{~kg} \\
R & =8.31 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} \\
N_{\mathrm{A}} & =6.02 \times 10^{23} \mathrm{~mol}^{-1} \\
k & =1.38 \times 10^{-23} \mathrm{JK}^{-1} \\
G & =6.67 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}-2 \\
g & =9.81 \mathrm{~ms}^{-2}
\end{aligned}
$$

the Avogadro constant
the Boltzmann constant
gravitational constant
acceleration of free fall

Formulae

uniformly accelerated motion
work done on/by a gas
gravitational potential
hydrostatic pressure
pressure of an ideal gas
simple harmonic motion
velocity of particle in s.h.m.

Doppler effect
electric potential
capacitors in series
capacitors in parallel
energy of charged capacitor
electric current
resistors in series
resistors in parallel

Hall voltage
alternating current/voltage
radioactive decay
decay constant
$s=u t+\frac{1}{2} a t^{2}$
$v^{2}=u^{2}+2 a s$
$W=p \Delta V$
$\phi=-\frac{G m}{r}$
$p=\rho g h$
$p=\frac{1}{3} \frac{N m}{V}\left\langle c^{2}\right\rangle$
$a=-\omega^{2} x$
$v=v_{0} \cos \omega t$
$v= \pm \omega \sqrt{\left(x_{0}^{2}-x^{2}\right)}$
$f_{\mathrm{o}}=\frac{f_{\mathrm{s}} v}{v \pm v_{\mathrm{s}}}$
$V=\frac{Q}{4 \pi \varepsilon_{0} r}$
$1 / C=1 / C_{1}+1 / C_{2}+\ldots$
$C=C_{1}+C_{2}+\ldots$
$W=\frac{1}{2} Q V$
$I=A n v q$
$R=R_{1}+R_{2}+\ldots$
$1 / R=1 / R_{1}+1 / R_{2}+\ldots$
$V_{H}=\frac{B I}{n t q}$
$x=x_{0} \sin \omega t$
$x=x_{0} \exp (-\lambda t)$
$\lambda=\frac{0.693}{t_{\frac{1}{2}}}$

Answer all the questions in the spaces provided.
1 (a) Complete Table 1.1 by stating whether each of the quantities is a vector or a scalar.
Table 1.1

quantity	vector or scalar
acceleration	
power	
work	

(b) The variation with time t of the velocity v of an object is shown in Fig. 1.1.

Fig. 1.1
(i) Determine the acceleration of the object from time $t=0$ to time $t=4.0 \mathrm{~s}$.
acceleration $=$ \qquad ms^{-2} [2]
(ii) Determine the distance moved by the object from time $t=0$ to time $t=4.0 \mathrm{~s}$.
distance $=$
m [2]
(c) (i) Define force.
\qquad
\qquad
(ii) The motion represented in Fig. 1.1 is caused by a resultant force F acting on the object.

On Fig. 1.2, sketch the variation of F with time t from $t=0$ to $t=12.0 \mathrm{~s}$. Numerical values of F are not required.

Fig. 1.2
[Total: 10]

2 (a) State what is meant by work done.
\qquad
(b) A beach ball is released from a balcony at the top of a tall building. The ball falls vertically from rest and reaches a constant (terminal) velocity. The gravitational potential energy of the ball decreases by 60 J as it falls from the balcony to the ground. The ball hits the ground with speed $16 \mathrm{~m} \mathrm{~s}^{-1}$ and kinetic energy 23J.
(i) Show that the mass of the ball is 0.18 kg .
(ii) Calculate the height of the balcony above the ground.

> height =
\qquad
(iii) Determine the average resistive force acting on the ball as it falls from the balcony to the ground.
average resistive force $=$
(c) State and explain the variation, if any, in the magnitude of the acceleration of the ball in (b) during the time interval when the ball is moving downwards before it reaches constant (terminal) velocity.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

3 A spring is extended by a force. The variation with extension x of the force F is shown in Fig. 3.1.

Fig. 3.1
(a) State the name of the law that relates the force and extension of the spring shown in Fig. 3.1.
\qquad
(b) Determine:
(i) the spring constant, in Nm^{-1}, of the spring
spring constant =
\qquad Nm^{-1}
(ii) the strain energy (elastic potential energy) in the spring when the extension is 4.0 cm .
(c) One end of the spring is attached to a fixed point. A cylinder that is submerged in a liquid is now suspended from the other end of the spring, as shown in Fig. 3.2.

Fig. 3.2
The cylinder has length 5.8 cm , cross-sectional area $1.2 \times 10^{-3} \mathrm{~m}^{2}$ and weight 6.20 N . The cylinder is in equilibrium when the extension of the spring is 4.0 cm .
(i) Show that the upthrust acting on the cylinder is 0.60 N .
(ii) Calculate the difference in pressure between the bottom face and the top face of the cylinder.
\qquad
(iii) Calculate the density of the liquid.
\qquad
density =
$\mathrm{kg} \mathrm{m}^{-3}$
[2]
(d) The liquid in (c) is replaced by another liquid of greater density.

State the effect, if any, of this change on:
(i) the upthrust acting on the cylinder
\qquad
(ii) the extension of the spring.

BLANK PAGE

4 (a) State the principle of superposition.
\qquad
\qquad
\qquad
(b) A transmitter produces microwaves that travel in air towards a metal plate, as shown in Fig. 4.1.

Fig. 4.1
The microwaves have a wavelength of 0.040 m . A stationary wave is formed between the transmitter and the plate.
(i) Explain the function of the metal plate.
\qquad
\qquad
(ii) Calculate the frequency, in GHz , of the microwaves.
\qquad
(iii) A microwave receiver is initially placed at position X where it detects an intensity minimum. The receiver is then slowly moved away from X directly towards the plate.

1. Determine the shortest distance from X of the receiver when it detects another intensity minimum.

> distance = m
2. Determine the number of intensity maxima that are detected by the receiver as it moves from X to a position that is 9.1 cm away from X.
number $=$ \qquad

5 A source of sound is attached to a rope and then swung at a constant speed in a horizontal circle, as illustrated in Fig. 5.1.

Fig. 5.1 (not to scale)
The source moves with a speed of $12.0 \mathrm{~m} \mathrm{~s}^{-1}$ and emits sound of frequency 951 Hz . The speed of the sound in the air is $330 \mathrm{~m} \mathrm{~s}^{-1}$. An observer, standing a very long distance away from the source, hears the sound.
(a) Calculate the minimum frequency, to three significant figures, of the sound heard by the observer.
minimum frequency $=$ \qquad
(b) The circular path of the source has a radius of 2.4 m .

Determine the shortest time interval between the observer hearing sound of minimum frequency and the observer hearing sound of maximum frequency.
time interval $=$

BLANK PAGE

6 (a) State Kirchhoff's first law.
\qquad
\qquad
(b) A battery of electromotive force (e.m.f.) 12.0 V and internal resistance r is connected to a filament lamp and a resistor, as shown in Fig. 6.1.

Fig. 6.1
The current in the battery is 3.6 A and the current in the resistor is 2.1 A . The $I-V$ characteristic for the lamp is shown in Fig. 6.2.

Fig. 6.2
(i) Determine the resistance of the lamp in Fig. 6.1.
resistance $=$
Ω [3]
(ii) Determine the internal resistance r of the battery.

$$
r=
$$

(iii) The initial energy stored in the battery is 470 kJ . Assume that the e.m.f. and the current in the battery do not change with time.

Calculate the time taken for the energy stored in the battery to become 240 kJ .
time =
(iv) The filament wire of the lamp is connected in series with the adjacent copper connecting wire of the circuit, as illustrated in Fig. 6.3.

Fig. 6.3 (not to scale)
Some data for the filament wire and the adjacent copper connecting wire are given in Table 6.1.

Table 6.1

	filament wire	copper wire
cross-sectional area	A	$360 A$
number density of free electrons	n	$2.5 n$

Calculate the ratio
average drift speed of free electrons in filament wire.
average drift speed of free electrons in copper wire
ratio =
[Total: 10]

7 (a) The results of the α-particle scattering experiment provide evidence for the structure of the atom.

Result 1: The vast majority of the α-particles pass straight through the metal foil or are deviated by small angles.

Result 2: A very small minority of α-particles is scattered through angles greater than 90°.
State what may be inferred (deduced) from:
(i) result 1
\qquad
\qquad
(ii) result 2 .
\qquad
\qquad
\qquad
(b) A radioactive decay sequence contains four nuclei, P, Q, R and S, as shown.

$$
{ }_{84}^{218} \mathrm{P} \rightarrow{ }_{82}^{214} \mathrm{Q} \rightarrow{ }_{83}^{214} \mathrm{R} \rightarrow \mathrm{~S}
$$

Nucleus S is an isotope of nucleus P.
(i) Determine the proton number and the nucleon number of nucleus S .

$$
\begin{gathered}
\text { proton number }= \\
\text { nucleon number }=\text {... }
\end{gathered}
$$

(ii) The quark composition of a nucleon in Q changes as Q decays to form R.

Describe this change to the quark composition of the nucleon.
\qquad
\qquad

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

